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Based on the coupled mode theory, the influence of the introducing chirp on the bistable characteristics of linear negative 

tapered Bragg gratings have been investigated. The results show that introducing positive chirp is helpful to improve the 

bistable performance of linear negative tapered Bragg gratings; and the bistable performance can be further optimized by 

reasonably selecting the length of the linear negative-tapered Bragg gratings with positive chirp. 
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1. Introduction 

 

Nonlinear Bragg gratings (NLBG) act as an important 

optical device in fiber communication field due to 

particular properties [1-3]. Outside “photonic band 

gap”(PBG), slow Bragg soliton related to great anomalous 

group velocity dispersion(GVD) has been used for 

ultra-short optical pulse compression successfully [4-6]; 

Inside PBG, a positive feedback loop(among inner optical 

intensity, nonlinear refractive index, and Bragg resonance) 

causes optical bistability phenomena. In recent years, 

many efforts have been made to improve bistable 

performance of NLBG, such as the switching–on threshold, 

the switching time, the on-off switching ratio and dynamic 

stability, etc. The used technologies mainly include spatial 

taper, phase shift, chirp and nonlinear refractive index 

axial varying, etc. In paper [15], it investigated the bistable 

performance of linearly negative tapered NLBG. Based on 

this, in this article ,a novel scheme has offer to further 

improve linear negative tapered NLBG. The results show 

that introducing positive chirp can improve bistable 

performance of linear negative tapered NLBG and the 

bistable performance can be further optimized by 

reasonably selecting the length of grating. 

 

 

2. Theoretical model 

 

Inside fiber gratings, the z-axial distribution of 

refractive index can be described by:  
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where E(z) is the inner electric field of grating, Λis the 

grating period, )(z  is the spatial phase shift. 0n ，
1n

（z）and 
2n  denote the effective mode refractive index, 

linear refractive index modulation amplitude, and 

nonlinear refractive index coefficient, respectively.  

The inner electric field can be expressed by: 
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where   is the carrier angular frequency, t  is the time, 

 /0  is the Bragg wave number,  fA and bA  

represent the slowly varying amplitude of forward and 

backward wave,  respectively. In this paper, assuming 

that the incident wave is continuous wave.  

Substituting Eqs. (1) and (2) into the wave equations, 

and neglecting the loss and material dispersion (the 

nonlinear medium of NLBG is assumed to be 

Erbium-doped fiber without pump, even though its loss 

and material dispersion coefficients near 1.55 µm are large, 

the total loss and material dispersion are negligible due to 

very short length selected in calculations), the response 

time of material is very fast enough, as well as  the 

carrier wavelength is close to Bragg wavelength, one can 

obtain the following nonlinear couple-mode equations[5]:  
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where gv  is the light group velocity in the grating 

medium,  ,  and k  account for the detuning, 

nonlinear coefficient, and coupling coefficient, 

respectively, which can be expressed by 
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where c is the light velocity in vacuum,  00 2n is 

the Bragg wavelength,   is the confinement factor.  

For linear negative tapered NLBG, k can be written 

as [13]: 

 

         ]/)2/(1[)( 0 LLzkkzk              (5) 

 

where L is the total length of grating, 0k is the coupling 

coefficient of the grating center, and k  characterizes 

the variation slop of coupling coefficient. A positive 

(negative) value of corresponds to the positive (negative) 

tapered. 

For a linear chirped NLBG, the Bragg wave number 

0  becomes z-dependent and can be written as [13]: 
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where  0  is the average Bragg wave number, a 

positive (negative) value of C corresponds to the positive 

(negative) chirped, and the magnitude of C represent the 

total change in Lz)(0  along the device. For small 

amounts of spatial chirp, the coupled-mode equations 

remain unchanged except that the detuning parameter 

 now becomes z-dependent. 

The boundary conditions are given by: 
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where iA , 
rA  and tA  are the slowly varying 

amplitudes of the incident, reflected and transmitted wave, 

respectively. 

Setting the spatial derivative with respect to t  in Eqs. 

(3a) and (3b) equal to zeros, the axial evolving equations 

of slowly varying amplitude under steady-state can be 

analyzed numerically by means of the fourth-order 

Runge-Kutta method together with boundary conditions. 

 

 

3. Results and discussion 

 

The used data in calculations are [15] m 55.10  ，

46.10 n , wmn /109.6 215

2

 ， 8.0  . To facilitate 

description, the input and output light intensity
iI , 

tI  are 

normalized as 
ci II / , 

ct II /  respectively in following 

discussions. Where  0 24 / 3cI n L   is the critical 

input intensity [13]. 

 

 

 

Fig. 1. Input-output characteristics of linear negative 

tapered NLBG for various linear chirp C. 

 

Fig. 1. shows the steady-state input-output 

characteristics of linear negative tapered NLBG for 

various linear chirp C. Where 1k ,  L=2.5 

(which is near an edge of PBG)   0k =3
1cm ，L=1cm. 

From Fig.1, it can be seen that, introducing negative chirp 

increases the switching-on threshold, the width of the 

hysteresis decrease rapidly, even the bistable phenomena 

vanish with increasement of the amount of the negative 

chirp; while introducing positive chirp, with the 

increasement of the positive chirp, the upper branch 

becomes flatter, the on-off switching ratio decreases, but 

the switching threshold decreases significantly. As a result, 

introducing positive chirp is helpful to improve the 

bistability performance of linear negative tapered NLBG.  

Figs. 2 and 3 show that, for various detuning, the 

steady-state input-output characteristics of 

nonchirped(C=0) and linearly positive chirped(C=5) linear 

negative tapered NLBG, respectively. As in Fig. 2 , for the 

nonchirped linear negative tapered NLBG, the highest 

value of the detuning  L=3 is chosen near the onset of 

bistability and  L decreased  to 1.8 when the switch-on 

input intensity reaches to 0.6 of the critical intensity 

( given by the curve g ); for the linearly positive chirped 

case, as in Fig. 3, the highest value of the detuning  L=3  

is the same as the nonchirped case,  however,  L 

decreased to 0.8 when the switch-on input intensity also 

reaches to 0.6 of the critical intensity(given by the curve l). 

As a result, the addition of positive linear spatial chirp to 

the linear negative tapered NLBG increases significantly 

the incident wavelength range that observe optical 

bistability.  
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In addition, by comparing the bistability 

characteristics of linear negative tapered NLBG with and 

without spatial chirp for a fixed frequency incident light, 

i.e. for a fixed value of L , introducing positive spatial 

chirp decreases the on-off switching ratio of the bistable 

switching, whereas it decreases significantly the switching 

threshold, and the upper branch of the hysteresis become 

flatter. These features may be understood as follows: the 

addition of chirp makes Bragg wavenumber becomes 

z-dependent, and more incident lights experience 

resonance amplification due to satisfying the Bragg 

conditions, therefore widen the bistable wavelength range; 

however, axial varies of Bragg wavelength reduce the 

times of resonance amplification for the incident light at a 

given frequency, so the inner feedback of grating become 

weaker and the transmittance of the upper branch reduces, 

therefore, the on-off switching ratio become small. 

 

 

Fig. 2. Input-output characteristics of nonchirped(C=0) 

linear negative tapered NLBG for various detuning. 

 

Fig. 3. Input-output    characteristics   of   positive 

chirped(C=5) linear negative tapered NLBG for various 

detuning. 

 

As a result, introducing positive chirp in linear 

negative tapered NLBG will be helpful to decrease the 

switching threshold, flatten the upper branch of hysteresis, 

and widen the bistable wavelength range. 

 

 
Fig. 4. Input-output   characteristics   of  the linear 

positive-chirped negative-tapered grating for the various 

length. 

 

Fig. 4 shows the steady-state input-output 

characteristics of the linear positive-chirped 

negative-tapered NLBG for the different grating length. 

Where 1k ,  =2.5 cm
-1

, 0k =3 1cm . From the 

figure, it can be seen that , the grating length have obvious 

influence on the bistable characteristics, such as the 

switching-on threshold, the on-off ratio and the width of 

the hysteresis. When length is smaller(<0.8cm), no 

bistable phenomena occurs. With the gradual increasement 

of length, the bistable effect begin to occurs, moreover the 

hysteresis width become bigger, for the bigger length, it 

exists two hysteresis. As a result, the bistable performance 

can be further optimized by reasonably selecting the 

grating length of the the linear positive-chirped 

negative-tapered grating.  

 

 

4. Conclusions 

 

By using the nonlinearly coupled mode theory, this 

paper has demonstrated the influence of introducing chirp 

on the bistable characteristics of linear negative tapered 

Bragg gratings.The numerical simulations show that, 

introducing positive chirp will be helpful to decrease the 

switching threshold, flatten the upper branch of the 

hysteresis, and enlarge significantly the incident 

wavelength range that observe optical bistability; on the 

other hand, introducing negative chirp will worsen the 

bistable performance remarkably. Moreover, the bistable 

switching performance can be further optimized by 

reasonabley selecting the length of the linear negative 

tapered Bragg gratings with positive chirp, The results 

may provide an instructive insight from a practical 

viewpoint. 
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